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Abstract

A self-consistent set of relationships is developed for the physical properties of single walled carbon nanotubes (SWCN) and their

hexagonal arrays as a function of the chiral vector integer pair, (n,m). Properties include effective radius, density, principal Young’s
modulus, and specific Young’s modulus. Relationships between weight fraction and volume fraction of SWCN and their arrays are
developed for the full range of polymeric mixtures. Examples are presented for various values of polymer density and for multiple

SWCN diameters.
# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The use of single walled carbon nanotubes (SWCN)
for reinforcement of polymeric materials has been given
as one of the primary applications for this new material
form since its discovery more than a decade ago [1]. Yet
no unified basis for reporting the physical properties of
SWCN or arrays of SWCN as reinforcements has
emerged. For example, the reference volume, required
to measure volume dependent properties, is taken as the
entire cylindrical volume enclosed by the carbon atom
crystal lattice when reporting density [2], while for the
effective Young’s modulus, the cylindrical volume with
inner and outer diameter defined by the bounds of the
monoatomic layer of carbon atoms is used [3,4]. These
different geometry definitions have led to reported axial
moduli ranging from 1.25 TPa [4] for SWCN to 67 GPa
[7] in arrays. The need for a self-consistent set of prop-
erties is evident. Another author [5] has also stated this
need, but does not offer a set of relationships that unify
these data. In order to account for the contribution of
the SWCN to the overall properties of the polymeric
composite wherein the SWCN serves the role of the
reinforcement, it is necessary to view its effective prop-
erties so that they correspond to a specified volume
within the composite. In this work, the representative
volume element for all physical properties is defined as
that of a cylindrical volume with diameter equal to twice
the effective SWCN radius, where the effective SWCN
radius includes one-half the van der Waals equilibrium
separation distance.
The van der Waals equilibrium distance for SWCN

can be defined as the average center-to-center distance
between the carbon atom of the SWCN and the nearest
atom of the adjacent medium. Therefore, the van der
Waals standoff distance is dependent upon the proper-
ties of the adjacent medium. In the case of an array
composed of SWCN of equal diameter, the individual
SWCN are surrounded by other SWCN of like proper-
ties and the equilibrium distance is designated as l.
Suspension of SWCN in a polymeric phase yields a dif-
ferent separation distance, n. When employing the
equations developed in the present work, it is necessary
to establish the value of n corresponding to the sus-
pending medium which can vary widely. In this paper,
the equilibrium separation distance in polymers is
assumed to be 0.342 nm, the equilibrium separation
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distance for graphene sheet [14]. The SWCN and
SWCN array physical property predictions presented in
the present work include density, principal Young’s
modulus (longitudinal direction) and specific modulus.
It is common practice to refer to weight fraction when
determining properties of mixtures of SWCN and sec-
ondary polymeric phase even though the physical prop-
erties of the mixture depend upon the volume fractions
of the constituents. In the present work, relationships
are developed not only to predict the physical properties
of the SWCN and its arrays, but also to predict rela-
tionships that are necessary to convert SWCN weight
fraction to volume fraction in mixtures. These property
relationships then serve to provide precursor data for
computational methods in the prediction of effective
properties of SWCN composites.
The literature is filled with reported values for the

Young’s modulus of carbon nanotubes and their arrays
[6–10]. These reported values differ by almost two
orders of magnitude. The SWCN density has also been
reported [12,13]; however, no clear methodology for
density calculation has been published in the literature.
It is the objective of this paper to develop a self-con-

sistent set of properties for the SWCN and its hexagonal
arrays and to provide the mixing rules for conversion of
weight fraction to volume fraction for mixtures of
SWCN and SWCN arrays with polymers. Properties
predicted include effective radius, density, principal
Young’s modulus, and specific Young’s modulus.
2. SWCN geometry

The SWCN has been described as a single graphene
sheet rolled up with varying degrees of twist as descri-
bed by its chiral vector, Ch [14]:

Ch ¼ na1 þ ma2 ð1Þ

where a1 and a2 are vectors in the two-dimensional
hexagonal lattice and the chiral vector, Ch is also refer-
red to by its indices, n and m. Nanotubes with chiral
vectors of (n,n) and (n,0) have no twist and are classified
as chiral nanotubes. These two special cases are some-
times denoted ‘‘armchair’’ and ‘‘zig zag,’’ respectively,
referring to the pattern of the carbon atoms around the
nanotube circumference [14]. Geometric representations
of SWCN structures of three different chiralities are
shown in Fig. 1. These images illustrate the dependence
of the SWCN upon the components of the chiral vector,
(n,m). The SWCN radius, Rn as shown in Fig. 2 is given
in the following relation as a function of the integer pair
and the C–C bond length, b [14]:

Rn ¼
b

2�

ffiffiffi
3

p
� ð2Þ

where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ mnð Þ

p
ð3Þ

For the SWCN, the C–C bond length, b is equal to 0.142
nm [14]. The carbon nanotube structure as shown inFig. 2a
is replaced by the effective reinforcing element in Fig. 2b.
The diameter 2Rn of the SWCN is a strong function

of the chiral integers n and m and varies over a wide
range as shown in Table 1. However, it is the smaller dia-
meters of SWCN that are of most interest as a polymeric
Nomenclature

a1 vector
a2 vector
A constant for SWCN principal Young’s

modulus calculation
b C–C bond length (nm)
B constant for SWCN Young’s modulus

calculation
En SWCN Young’s modulus (GPa)
Ena SWCN Young’s modulus in a hexagonal

array (GPa)
E�a SWCN array specific modulus (GPa)
E�n SWCN specific modulus (GPa)
Mw Atomic weight
m number of carbon atoms in a2 direction
n number of carbon atoms in a1 direction
N number of carbon atoms per unit length

(atoms/nm)
Na Avogadro’s number
Rn SWCN radius (nm)
Rna effective SWCN radius in and hexagonal

array (nm)
Rne effective SWCN radius (nm)
Va SWCN volume fraction of the hexagonal

array
Vn SWCN volume fraction
Wn SWCN array weight fraction
Wn SWCN weight fraction
Y graphene Young’s modulus (GPa)
� chiral vector function
l distance between the SWCN in an

hexagonal array (nm)
� distance between the SWCN and the

adjacent surrounding medium (nm)
�a SWCN array density (g/cm3)
�m SWCN/polymer composite density (g/cm3)
�n SWCN density (g/cm3)
�na SWCN density in a hexagonal array (g/

cm3)
�p polymer density (g/cm3)
��a SWCN effective array specific gravity
��n SWCN effective specific gravity
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Fig. 1. SWCN structure and example of nanotubes.
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reinforcement since the transverse properties of the lar-
ger tube diameters can lead to their collapse [15]. The
remaining geometric descriptors of the SWCN are the
cross-sectional area and length. As stated earlier, several
investigators have taken the SWCN equilibrium
separation distance to be equal to that of the equilibrium
separation distance of graphene sheets of 0.342 nm [15].
This issue requires more discussion since, as stated ear-
lier, the cross-sectional area occupied by the SWCN is
influenced by the character of the adjacent medium.
As in discontinuous fiber systems, the length of the

SWCN is likely to be a function of the processing tech-
nologies used for both the carbon nanotubes and the
incorporation of the polymeric phase. Bundle lengths of
up to 20,000 nm have been measured [16,17].
The effective radius of the SWCN,Rne, is defined as the

radius given in Eq. (2), Rn, plus one-half the equilibrium
separation distance between the SWCN and the polymer.
By defining SWCN radius in this way, the total volume
of the heterogeneous mixture is accounted for as follows:

Rne ¼
b

2�

ffiffiffi
3

p
� þ

v

2
ð4Þ
3. SWCN hexagonal array

The synthesis of SWCN typically results in the gen-
eration of collimated arrays of SWCN with hexagonal
cross-sectional arrangement [17]. In the present study
we examine the equilibrium separation distance, l of
such a hexagonal array calculated using the methods
discussed in reference [18], wherein the van der Waals
interactions of the SWCN are modeled with the Len-
nard-Jones potential with "=34.0 K and �=0.3406 nm
[18]. The results for (n,0) SWCN were calculated in sta-
tic molecular simulations and are presented in Table 2.
These results suggest that the separation distance is

not a function of the SWCN diameter, but rather can be
taken as a constant equal to 0.318 nm in agreement with
the equilibrium distance of 0.313 nm determined in
reference [19] and 0.315 nm in Ref. [20] for a similar
range of SWCN diameters. Thus, the SWCN effective
radius, Rna, in an array configuration (see Fig. 3) is
expressed as:

Rna ¼
b

2�

ffiffiffi
3

p
� þ

l
2

ð5Þ

The carbon nanotube array shown in Fig. 3a is
replaced by the effective reinforcement array shown in
Fig. 3b. For a constant separation distance, l the
SWCN volume fraction of the hexagonal array, Va, is a
Fig. 2. SWCN nomenclature.
Table 1

SWCN diameter for various chiral integers
n
 M
 2Rn (nm)
5
 5
 0.68
4
 6
 0.68
3
 7
 0.70
2
 8
 0.72
10
 10
 1.36
50
 50
 6.78
6
 0
 0.48
8
 0
 0.63
10
 0
 0.78
12
 0
 0.94
18
 0
 1.41
24
 0
 1.88
50
 0
 3.91
96
 0
 7.52
Table 2

SWCN (n,0) hexagonal array separation distance
n
 Diameter

(nm)
Separation distance, l
(nm)
6
 0.48
 0.316
12
 0.94
 0.317
18
 1.41
 0.317
24
 1.88
 0.318
54
 4.23
 0.318
96
 7.51
 0.319
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constant and is equal to the volume packing fraction of
0.906:

Va ¼
�

2
ffiffiffi
3

p ¼ 0:906 ð6Þ

The hexagonal SWCN array can be considered as a
reinforcement form similar to the individual SWCN. As
such, the descriptions presented are for the effective
properties of the array in the absence of a second phase.
4. Density

The density of the SWCN in the present work is
defined as the total mass of the carbon atoms in the
enclosed volume as defined in Eq. (4). To calculate the
mass of the carbon atoms, it is necessary to express their
number per unit length, N:

N ¼
4�

3b
ð7Þ

Then the nanotube density, �n can be expressed in
terms of the chiral vector by combining Eqs. (4) and (7)
as follows:

�n ¼
NMw

�NaR2
ne

¼
16�Mw�

3Nab 3b2�2 þ 2
ffiffiffi
3

p
b��� þ �2�2

� � ð8Þ

where �, measured in nm, is the equilibrium standoff
distance between the SWCN and the adjacent medium,
Mw is carbon atomic weight and Na is Avogadro’s
number. SWCN density as a function of diameter [Eq.
(8)] is presented in Fig. 4 along with the specific values
of chiral vector. Density is shown in tabular form in
Table 3 over a range of chiral vectors. These results
show that SWCN density decreases with increasing dia-
meter by an order of magnitude over a range of dia-
meters between 1 and 14 nm.
The results presented in Table 4 for a (10,10) SWCN

show that density is a weak function of the choice of the
van der Waals distance, �. Nanotubes having other
values of chiral vector also showed a similar weak
dependence on �.
The density of the hexagonal array of SWCN is the

product of the SWCN density in an array configuration
Fig. 3. SWCN array nomenclature.
Fig. 4. SWCN density versus diameter.
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[Eqs. (5) and (7)] and the volume packing fraction of the
hexagonal array [Eq. (6)]:

�a ¼ Va�na ¼ Va
NMw

�NaR 2
na

¼
�

2
ffiffiffi
3

p
16�Mw�

3Nab 3b2�2 þ 2
ffiffiffi
3

p
b�l� þ �2l2

� �
" #

ð9Þ

Like the density of the individual SWCN, the array
density shows a significant reduction with SWCN dia-
meter [Eq. (9)]. It is noteworthy that density of the
SWCN array differs from that of the SWCN only by the
product of the maximum volume fraction (0.906) and
the difference in separation distances, � and l. Since the
separation distances for the array (0.318 nm) and indi-
vidual SWCN (0.342 nm) are similar, it is likely that the
array density will not differ significantly from those of
the SWCN. Fig. 5 shows a comparison between density
values for individual SWCN and arrays of SWCN for
several nanotube chiralities.
5. Principal Young’s modulus

Here the principal modulus is taken as the modulus of
the SWCN and its arrays in the direction parallel to the
SWCN longitudinal axis. In the following development
it is assumed that the SWCN are continuous and that
the array consists of SWCN of identical diameter. The
present model is a simplified approach wherein the
stiffness of a graphene sheet, rolled into the SWCN
configuration, is mapped onto the enclosed volume
defined by the effective SWCN radius.

5.1. SWCN

The present approach to estimate the Young’s mod-
ulus, En, of the SWCN is to represent the SWCN as a
thin-walled cylinder of outer radius, Rne, predicted by
Eq. (4). It is assumed that the stiffness of the thin-walled
cylinder representing the SWCN is equal to that of the
Young’s modulus of the graphene sheet, Y, and that the
SWCN occupies the enclosed cylindrical volume. En and
Y are given as:

En ¼
8YRn�

4R2
n þ 4Rn�þ �2

Y ¼
C2
11 � C2

12

� �
C11

ð10Þ

where C11 and C12 are the stiffness constants of gra-
phene [20].
Substituting Eq. (2) into (10) yields:

En ¼
4

ffiffiffi
3

p
�bY��

3b2�2 þ 2
ffiffiffi
3

p
b���þ �2�2

ð11Þ

Eq. (11) shows that the modulus of the SWCN
decreases with increasing radius. Earlier work described
in references [7,10,11] has shown a similar behavior.
Here the work described in [10] is compared with the
present work predicted in Eq. (11).

En ¼
A

Rn
þ B ð12Þ
Table 3

SWCN chiral integers versus density
n
 M
 Density (g/cm3)
5
 5
 1.99
4
 6
 1.99
3
 7
 1.98
2
 8
 1.95
10
 10
 1.44
50
 50
 0.41
6
 0
 2.18
8
 0
 2.04
10
 0
 1.89
12
 0
 1.75
18
 0
 1.40
24
 0
 1.16
50
 0
 0.66
96
 0
 0.37
Table 4

van der Waals distance and density for (10,10) SWCN
� (nm)
 Density (g/cm3)
0.32
 1.471
0.33
 1.453
0.34
 1.436
0.35
 1.419
0.36
 1.403
Fig. 5. Comparison of SWCN and array densities.
1354 R. Byron Pipes et al. / Composites Science and Technology 63 (2003) 1349–1358



where the constants in Eq. (12) are defined as A=429.6
GPa-nm and B=8.42 GPa and were obtained from [10].
The choice of the equilibrium separation distance, � and
Young’s modulus of the graphene sheet in Eq. (11)
uniquely determine the quantitative values of the
SWCN Young’s modulus for all radii. In the present
study, we take the experimental value of the Young’s
modulus of the graphene sheet as reported in Ref. [21]
as 1029 GPa and the separation distance as that for the
graphene sheet of 0.342 nm. Predictions of SWCN
modulus as a function of diameter using Eq. (11) are
shown in Fig. 6. Table 5 illustrates the utility of Eq. (11)
in determining Young’s modulus for five specific sets of
chiral integers, (n,m). In addition, a comparison with
the results of Refs. [7] and [11] show that all four models
provide very similar results.

5.2. SWCN hexagonal array extension

Utilizing the Young’s modulus, Ena, of individual
SWCN in an array configuration, we obtain the follow-
ing SWCN array modulus:

Ea ¼ VaEna ¼
2�2bY�l

3b2�2 þ 2
ffiffiffi
3

p
b��lþ �2l2

ð13Þ

Results for the principal modulus of the SWCN array
shown in Fig. 7 and predicted by Eq. (13) show that the
array modulus follows identical trends as for the indivi-
dual SWCN. This is true because the two predictions
differ only by the product of the maximum volume
fraction (0.906) and the difference in van der Waals
distances (l=0.318 nm for the array). Predictions of
Eq. (13) also show excellent agreement with those pre-
sented in reference [20] obtained from lattice dynamics
calculations for (3n,3n) ‘‘armchair’’ and (3n,0) ‘‘zigzag’’
SWCN as shown in Fig. 7. The data taken from [20]
were for four data points and one interpolated value. To
further clarify the differences in moduli between the
SWCN and the array, results are presented in Fig. 8 for
several nanotube chiralities.
6. Specific axial modulus

The specific modulus, E�n, of the SWCN is defined as
the ratio of the principal Young’s modulus, En, divided
by a quantity analogous to specific gravity of the SWCN,
��n. Combining Eqs. (8) and (10) yields the expression:

E�n ¼
En

��n
¼
3Na

ffiffiffi
3

p
b2Y�

4Mw
ð14Þ

Eq. (14) yields results independent of the SWCN dia-
meter since the same SWCN volume is utilized in the
calculation of both modulus and density.
Fig. 6. SWCN Young’s modulus versus diameter.

Fig. 7. SWCN array Young’s modulus versus diameter.
Fig. 8. Comparison of SWCN and array Young’s modulus.
Table 5

SWCN Young’s modulus for specific chiral integers
n
 m
 En (GPa)

Eq. (11)
En (GPa)

Eq. (12)
En (GPa)

[7]
En (GPa)

[11]
10
 10
 662
 642
 608
 680
18
 0
 647
 618
 594
 664
24
 0
 536
 465
 492
 550
50
 0
 304
 228
 279
 311
96
 0
 171
 123
 157
 175
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In a similar manner, the specific modulus for the SWCN
array, E�a, is obtained by combining Eqs. (9) and (13):

E�a ¼
Ea

��a
¼
3Na

ffiffiffi
3

p
b2Yl

4Mw
ð15Þ

These results show that the specific modulus of the
SWCN array is identical in form to that of the SWCN.
7. Weight fraction versus volume fraction

With the establishment of the density of the SWCN, it
is now possible to develop a relationship between weight
fraction and volume fraction of SWCN in a mixture
with a second material such as a polymer. Consider a
SWCN/polymer mixture of density, �m with a SWCN
volume fraction, Vn, a SWCN density of �n and a poly-
mer density of �p. The SWCN volume fraction can be
expressed as follows:

Vn ¼
�m � �p

�n � �p
ð16Þ

It is also possible to express the SWCN volume frac-
tion in terms of its weight fraction, Wn:

Vn ¼
�m

�n
Wn ¼

Wn�p

Wn�p þ 1� Wnð Þ�n
ð17Þ

Combining Eqs. (20) and (8) we obtain the final
expression for SWCN volume fraction:

Vn ¼

Wn3b 3b2�2 þ 2
ffiffiffi
3

p
b��� þ �2�2

� �
�p

Wn�p3b 3b2�2 þ 2
ffiffiffi
3

p
b��� þ �2�2

� �
þ 1� Wnð Þ16�k�

ð18Þ

The relationship between volume fraction and weight
fraction for SWCN-polymer mixtures is shown in Fig. 9
for (6,6), (12,12) and (18,18) SWCN for a polymer density
of 1 g/cm3. These results show that as the diameter of the
SWCN is decreased, the non-linearity in the relationship
increases. This occurs because the difference between the
SWCN and polymer densities increases as the SWCN
diameter decreases. Results in the dilute concentration
regime (Wn <0.012) are shown in Fig. 10 for convenience
since many applications are in this range. The influence of
variations in polymer density upon the relationship
between volume and weight fraction is shown in Fig. 11
for the (10,10) SWCN. Here increasing polymer density
decreases the non-linearity in the relationship. This occurs
because as the polymer density increases from 0.8 to 1.2 g/
cm3, it approaches the density of the (10,10) SWCNwhich
is 1.44 g/cm3. Again, as the density difference between the
polymer and SWCN decreases, the non-linearity in the
weight fraction volume fraction is also decreasing.
The relationship for the volume fraction of SWCN

arrays, Va, in terms of the corresponding weight frac-
tion, Wa, for SWCN arrays in a polymer mixture is:

Va ¼

Wa3
ffiffiffi
3

p
b 3b2�2 þ 2

ffiffiffi
3

p
b��� þ �2l2

� �
�p

Wa�p3
ffiffiffi
3

p
b 3b2�2þ2

ffiffiffi
3

p
b��� þ �2l2

� �
þ 1�Wað Þ8�2k�

ð19Þ
Fig. 9. SWCN volume fraction versus weight fraction (polymer density

=1 g/cm3) .
Fig. 10. SWCN results at dilute concentrations (polymer density=

1 g/cm3) .
Fig. 11. SWCN (10,10) results for different polymer densities.
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Fig. 12 illustrates a similar weight-volume fraction
relationship for SWCN arrays as was shown in Fig. 9
for individual SWCN suspended in a polymeric phase of
density 1 g/cm3. Arrays in dilute concentrations sus-
pended in a polymeric phase are illustrated in Fig. 13 for
(6,6), (12,12) and (18,18) SWCN. Finally, the influence of
polymer density upon the relationship between polymer
mixtures containing SWCN arrays is shown in Fig. 14.
These relationships, based on a consistent definition

of volume and thereby, volume fraction, are necessary
for micromechanics calculations to determine the effec-
tive properties of nanotube reinforced polymers.
8. Summary table of properties

Table 6 shows the set of physical properties of the
SWCN and its hexagonal arrays as a function of the
chiral vector, (n,m).
Fig. 12. Array volume fraction versus weight fraction (polymer density

=1 g/cm3).
Fig. 13. Array results at dilute concentrations (polymer density=

1 g/cm3).
 Fig. 14. SWCN (10,10) array results for different polymer densities.
Table 6

Properties of SWCN and SWCN arrays
Property
 SWCN
 SWCN array
Radius (nm)
 Rne ¼
b

2�

ffiffiffi
3

p
� þ

v

2

Rna ¼

b

2�

ffiffiffi
3

p
� þ

l
2

Density (g/cm3)
 �n ¼
16�Mw�

3bNa 3b2�2 þ 2
ffiffiffi
3

p
b��� þ �2�2

� �
 �a ¼
�

2
ffiffiffi
3

p
Na

16�Mw�

3b 3b2�2 þ 2
ffiffiffi
3

p
b�l� þ �2l2

� �
" #
Modulus (GPa)
 En ¼
4

ffiffiffi
3

p
�bY��

3b2�2 þ 2
ffiffiffi
3

p
b���þ �2�2
Ena ¼ VaEna ¼
2�2bY�l

3b2�2 þ 2
ffiffiffi
3

p
b��lþ �2l2
Specific modulus (GPa)
 E�n ¼
3

ffiffiffi
3

p
b2Y�

4k

E�a ¼

3
ffiffiffi
3

p
b2Yl
4k
Volume-weight fraction
 Vn ¼
Wn3b 3b2�2 þ 2

ffiffiffi
3

p
b��� þ �2�2

� �
�p

Wn�p3b 3b2�2 þ 2
ffiffiffi
3

p
b��� þ �2�2

� �
þ 1� Wnð Þ16�k�

Va ¼
Wa3

ffiffiffi
3

p
b 3b2�2 þ 2

ffiffiffi
3

p
b��� þ �2l2

� �
�p

Wa�p3
ffiffiffi
3

p
b 3b2�2 þ 2

ffiffiffi
3

p
b��� þ �2l2

� �
þ 1� Wað Þ8�2k�
� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ m2 þ mnð Þ

p

b=0.142 nm
 Mw/Na=0.01995
�=0.342 nm
 l=0.318 nm
Y=1029 GPa
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9. Conclusions

The primary objective of this paper was to develop a
consistent set of predictions for several of the physical
properties of SWCN and their arrays to provide the
foundation for developing an understanding of SWCN
and arrays as reinforcements in polymers.
The density and moduli of the SWCN and the

SWCN array are shown to differ only slightly since
the van der Waals distances differ only modestly
(0.318 nm versus 0.342 nm) and the SWCN array has
a packing fraction of 0.906. The equilibrium separa-
tion distance for the SWCN array, determined to be
0.318 nm, was seen to be in good agreement with the
values of 0.313 and 0.315 nm published earlier in the
literature.
When the simple model for the SWCN principal

modulus, consisting of a hollow cylinder with properties
of the cylinder wall equal to the stiffness of the graphene
sheet was employed, the specific modulus of both the
SWCN and its SWCN arrays were found to be inde-
pendent of SWCN diameter.
For both the SWCN and SWCN array, the principal

Young’s modulus showed significant dependence upon
SWCN radius. Predictions of SWCN array principal
moduli were also shown to be in excellent agreement
with those previously published in the literature
obtained from lattice dynamics calculations for (3n,3n)
‘‘armchair’’ and (3n,0) ‘‘zigzag’’ SWCN. Maximum
principal modulus was achieved at the smallest SWCN
radius, while density decreased significantly for
increased SWCN radius.
A useful equation was derived for the relationship

between weight fraction and volume fraction for SWCN
and SWCN arrays. The relationship requires knowledge
only of the components of the chiral vector of the
SWCN and the weight fractions of the constituents to
determine volume fraction of the SWCN and SWCN
arrays in a mixture.
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